Нарисуйте схематичный рисунок.
Получим что в трапеции ABCD диагонали AC и BD пересекаются в точке О.
Угол BOC=углу AOD (вертикальные).
Так как в трапеции BC || AD, то накрест лежащие углы при угле C и при угле A равны.
=> ∆ СОB ~ ∆ AOD по первому признаку подобия треугольников ч.т.д.
№2
если В треугольнике медина является биссектрисой, то такой треугольник равнобедренный:
АВ=ВС; АД=ДС(т к ВД - медиана) =>
АВ+АД=ВС+ДС;
Равс=АВ+АД+ВС+ДС=2(АБ+АД)
АБ+АД=Рабд-ВД=11см;
Равс=2*11=22
ответ: 22 см
№3
Такого треугольника не существует, так как периметр не может быть мень суммы двух сторон треугольника(7<5+3)
ответ: нет решения
№4
Высота, проведенная к основанию равнобедренного треугольника, является биссектрисой => ВАК=ВАС/2=23. ВКА=90(т к АК-высота)
ответ: 23, 90
№5
Наверняка вместе с условием к этой задаче прилагался готовый чертеж, так как без него ее не решить, ведь я не могу знать какой именно угол 1, а какой 2
№6
По теореме о сумме углов в треугольнике:
АСВ=180-МВС-МАС=180-90=90
ответ: 90
№7
Это тупоугольный треугольник
№8
Пусть медиана и биссектриса пересекаются в точке О
треугольники ВАО и МАО прямоугольные так как АД перпендикулярна ВМ, в них
ВАО=МАО(АД-биссектриса)
АО - общий => МОА=ВОА по катету и острому углу => АВ=АМ=АС/2=6см
ответ: 6 см
1)<OAD = <BCO, так как они накрест лежащие при AD||BC.
2)<AOD = <BOC, так как они вертикальные.
Так как два соответствующих угла в треугольниках равны, то они подобны(признак подобия треугольников)