
ответ:6 см
Объяснение:
1.в трапецию можно вписать окружность тогда, когда сумма оснований равна сумме боковых сторон.
Следовательно, можно найти вторую боковую сторону:
6+27=13+х
33=13+х
х=33-13
х=20
20 см - вторая боковая сторона
2. Радиус вписанной окружности в трапецию равен половине высоты трапеции.
Высота трапеции неизвестна. Её можно узнать, найдя площадь трапеции.
Формула площади трапеции по четырем сторонам :
подставляем все значения в эту формулу, учитывая, что а=6, б=27см, с=13 см, д=20 см, и находим площадь, которая равна 198 см2.
3. Ну а теперь можно приступить к нахождению высоты, зная площадь и основания.
У нахождения площади также существует формула: (а+б)/2*высоту
Подставляем все известные значения.
(6+27)/2*высоту=198
33/2*высоту=198
высота=198*2/33
Высота равна 12 см.
4. Радиус круга: 12/2 = 6 см.
Рассмотрим ABCM:
1. ABCM - прямоугольная трапеция, т.к. угол AMC = 90.
Следовательно BCM = AMC = 90, по теореме о сумме углов четырехугольника найдем угол А:
угол А = 360 - угол В - угол ВСМ - угол АМС = 45
2. угол А = углу D, т.к. трапеция ABCD равнобедренная (АВ=CD по условию)
Значит треугольник MCD - равнобедренный, т.к. угол D = 45, CMD = 90, следовательно, по теорме о сумме углов треугольника угол MCD = 45, то есть CM = MD = 12 (по св-ву равнобедренного тр-ка)
3. Доп. построение - BH, BH ⊥ AD, угол AHB = 90
Рассмотрим тр-ки ABH и CMD
1) AB = CD
2) угол A = углу D
Значит ABH = CMD (по гипотенузе и острому углу)
значит AH = MD = 12
AD = AH + MD + HM = 12 + 12 + 10 = 34 (BC = HM, т.к. HBCM - прямоугольник)
S = 1/2 * CM * (BC + AD) = 1/2 * 12 * (10 + 34) = 264
ответ: 264