Объяснение:1
1)Сколько общих точек имеют окружность и секущая?
Укажите верные утверждения:
1)3
2)нет общих точек
3)1
4)2 верно
2
Укажите верные утверждения:
1) Вписанный угол измеряется дугой, на которую он опирается верно
2) Окружность и секущая не имеют общих точек
3) Вписанные углы, опирающиеся на полуокружность - прямые верно
4) Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности верно
3
В трапецию, высота которой равна 17, вписана окружность. Найдите радиус этой окружности. R=8,5
4
Градусная мера дуги равна 40 градусов. Найдите градусную меру центрального угла, соответствующего этой дуге 80°
5
Даны окружность с центром О радиуса 5 см и точка А. Через точку А проведены две касательные к окружности. Найдите угол между касательными, если ОА = 10см.
° Отв: 60°
6
Из точки А к окружности с центром О проведена касательная, В - точка касания. Найдите радиус окружности, если АО = 17, АВ = 15. Отв: R=8
7
Сторона квадрата равна 13. Найдите радиус вписанной окружности. Отв: r=6,5
ответ записать без пробелов, единиц измерения, в десятичной дроби ставим ЗАПЯТУЮ!
8
Радиус окружности, проведенный к точке касания...
1)образует с касательной угол меньше 90 градусов неверно
2)образует с касательной угол больше 90 градусов неверно
3)перпендикулярен касательной верно
4)параллелен касательной неверно
9
В равностороннем треугольнике высота равна 15. Найдите радиус описанной окружности Отв: R=10
10
Сколько общих точек имеют окружность и касательная? Отв: 1 общую точку
11
В равностороннем треугольнике радиус вписанной окружности равен 2,7. Найдите радиус окружности описанной около этого треугольника. Отв: R=5,4
12
Градусная мера дуги равна 40 градусов. Найдите вписанный угол, который опирается на эту дугу. Отв: 40°
13
Вписанный угол окружности равен 40 градусов. Найдите градусную меру дуги, на которую он опирается.
Отв: 40°
14
Точки А и В разделили окружность на дуги, градусные меры которых относятся как 4:5. Найдите градусную меру большей дуги. Отв: 200°
15
В ромб вписана окружность.Её радиус равен 13. Найдите высоту ромба. Отв: 26
Задание1) Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
Т.о., углы АСВ и КАВ равны.
Задание 2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то они равны, пусть в треугольнике АСВ углы при основании АВ углы А и В, например равны β, а угол С равен α, в сумме они составляют 2β+α=180°⇒α=180-2β; В треугольнике АВК угол А равен β,угол А равен α, чтобы найти угол К, надо от 180°отнять (α+β), заменим α=180-2β. получим 180-(180-2β)-β=180°-180°+2β-β=β.
Значит, при основании ВК есть два угла, равные β. По признаку ΔАВК- равнобедренный.
Задание 3. Найдем площадь треугольников АСВ и КАВ. У них есть по паре равных углов. значит, по 2 признаку подобия КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. ВС/АВ=АС/АК=к- коэффициент пропорциональности. Синусы равных углов равны.
Площадь треугольника АСВ равна (BC*АС*sin∠ACB)=(BC²*sin∠ACB); площадь треугольника КАВ равна (АК*АВ*sin∠КАВ)=(АВ²*sin∠КАВ);
Найдем теперь отношение площадей
sΔАСВ/sΔКАВ=(BC²*sin∠ACB)/(АВ²*sin∠КАВ)=к², откуда видно, что от величины угла АСВ при данном условии отношение площадей не зависит.
ответ в документе
Всё расписано