Объяснение:
1) угол АОВ центральный и равен величине дуги, на которую опирается, то есть равен величине дуги АВ,
ответ: дуга АВ(х)= 72°
2) угол х вписаный, и опирается на дугу МК, и равен половине величины этой дуги. Вся окружность 360°.
Две дуги знаем, найдем дугу МК
МК=360°-112°-46°=202°, значит угол х=202°/2=101°
ответ угол х=101°
3) получается, что ∆АОВ равносторонний, и значит все стороны равны, х=ОА=8
ответ: х=8
4) угол АВС вписаный опирается на дугу АС, и равен половине этой дуги, значит дуга АС=2*27°=54, угол АОС центральный, опирается на дугу АС и равен величине этой дуги, угол АОС=54°
ответ: угол х=54°
5) угол АОС центральный, опирается на дугу АС и равен величине этой дуги, значит дуга АС, которая меньшая равна 130°, вся окружность 360°, значит большая дуга АС=360°-130°=230°. Угол х вписаный, опирается на большую дугу АС и равен половине величины этой дуги, значит угол х=230°/2=115°
ответ: угол х=115°
М∈АВ
N∈BC
P∈AC
И делит стороны так, что
MB=2AM, NC=2BN, AP=2PC, т.е. соотношение1:2
Отношение площадей треугольников имеющих равный (общий) угол равно произведению сторон содержащих этот угол. Доказательство этого факта приводить не буду. Желающие найдут (сделают :-) сами.
Рассмотрим, исходя из этого, треугольники АВС и AMP.
S(ABC)/S(AMP) = (AB*AC)/(AM*AP) (1)
Примем меньший отрезок АМ за 1 часть, соответственно MB будет 2 части.
Т.е. AB/AM = 3/1, AC/AP=3/2, подставим эти соотношения в выражение (1) для соотношения площадей треугольников получим:
S(ABC)/S(AMP) = (3*3)/(1*2) = 9/2, т.е. S(AMP)=(2/9)*S(ABC) =(2/9)*S
Можно провести аналогичные рассуждения для оставшихся треугольников, но учитывая соотношения сторон легко :-) заметить, что площади всех маленьких треугольников AMP, MBN, PNC равны и равны (2/9)*S.
Т.о. искомая площадь треугольника MNP будет равна
S-3*((2/9)*S) = 1/3 S, одной трети площади ABC, равной S.
И ещё. В чем смысл подобных задач? В том что ты учишься находить решение.
Сегодня это геометрия. Через годы это будут другие, более серьезные проблемы. На этом сайте ты научишься только списывать. Скачай себе
"Гордин-Планиметрия 7-9" и реши хотя бы одну задачу на соотношение площадей. Тогда я буду считать, что не зря потратил время, набивая всё это.
С тебя "69" :-)