По свойству параллельных плоскостей:
Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны. ⇒
FQ-линия пересечения искомой плоскости с верхним основанием призмы. FQ||AC
По условию СF:FD1=2:1 ⇒
СD1:FD1=3:1
FD1=6:3=2
∆ FD1Q~∆ ADC – прямоугольные, их стороны параллельны.
AC=AD:sin45°=6√2
Из подобия ∆ FD1Q~∆ ADC следует ∠D1FQ=DCA=45°
FQ=FD1:sin45°=2√2
CFQA - равнобедренная трапеция. FP⊥AC, FP- высота
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности оснований, больший – их полусумме.
СР=(АС-FQ):2=2√2
FC²=CF²+CC1*=17
Из прямоугольного ∆ СFP по т.Пияагора
FP=√(CF²-CP²)=√(17-8)=3
S(CFQA)=FP•(FQ+AC):2=3•(2√2+6√2):2=12√2 (ед площади)
В основаиях у этой пирамиды - КВАДРАТЫ. В любом осевом сечении получится равнобедренная трапеция, и наименьшая площадь у нее будет, если основания этой трапеции имеют наименьшую длину. В квадрате отрезок, соединяющий точки противоположных сторон и проходящий через центр квадрата, имеет наименьшую длину, если соединяет середины противоположных сторон, то есть сечение проходит через середины противоположных сторон оснований, и основания равнобедренной трапеции в осевом сечении РАВНЫ СТОРОНАМ КВАДРАТОВ В ОСНОВАНИИ.
Стороны оснований равны 6*корень(2) и 14*корень(2), их полусумма 10*корень(2), поэтому высота пирамиды 60/(10*корень(2)) = 3*корень(2).
А боковая сторона заданного осевого сечения является апофемой боковой грани. Она находится страндартным образом - опускается перпендикуляр из вершины малого основания на большое, получается прямоугольный треугольник с катетами 3*корень(2) и (14*корень(2) - 6*корень(2))/2 = 4*корень(2), поэтому боковая сторона осевого сечения равна 5*корень(2),
Находим площадь боковой грани. Она равна 10*корень(2)*5*корень(2)/2 = 50,
Поэтому полная поверхность имеет площадь = 72 + 392 + 4*50 = 664