Вот такое нахальное решение. ну уж простите : )пусть катеты a и b, гипотенуза с. я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая отрезок а от вершины. (пояснение.построенный со стороной (a + b) с вершинами аbcd, а - "левая нижняя" вершина. от а вверх - вдоль ав, откладывается а, потом от в вправо - вдоль вс откладывается а, потом от с вниз, вдоль cd, откладывается а, и от d вдоль da откладывается а.)все эти точки соединяются.получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).ясно, что центры этих квадратов . это автоматически доказывает то, что надо в . (если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство. на самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. этих треугольников там даже четыре, а не один : ), можно любой выбрать за исходный.)
1. Проведем высоты трапеции ВН и СК. ВН = СК как высоты трапеции, ВН║СК как перпендикуляры к одной прямой, значит НВСК - прямоугольник. НК = ВС = 15 см. ΔАВН = ΔDCK по катету и гипотенузе (АВ = CD так как трапеция равнобокая, ВН = СК), значит АН = DK = (AD - HK)/2 = (49 - 15)/2 = 34/2 = 17 см В прямоугольном ΔАВН ∠ВАН = 60°, значит ∠АВН = 30°, катет АН лежит напротив угла в 30°, значит АВ = 2АН = 34 см
Рabcd = 49 + 15 + 34 · 2 = 132 см
2. Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы: R = 10/2 = 5 см