из прямоугольного треугольника АВС по соотношениям в прямоугольном треугольнике катет равен произведению гипотенузы на косинус прилежащего угла, либо на синус противолежащего угла
Изначально так:///Пусть задана окружность ω (A; R) на плоскости Oxy, где точка A, центр окружности – имеет координаты a и b. ..Таким образом, координаты x и y любой точки окружности ω (A; R) удовлетворяют уравнению (x – a)^2 + (y – b)^2 = R^2./// Раскрыть скобки, получить х^2-2ах+а^2+у^2-2ву-в^2=R^2Преобразовав чуток поиметь своё выражение. Теперь в обратную:х^2+y^2+6х-8у=х^2+2*х*3+3^2-3^2 +у^2-2*у*4+4^2-4^4 = (х+3)^2 + (у-4)^2 ...Остальные цифири - в R^2 или ещё как, судя по недопечатанности хвостика вопроса вашего.Суть решения - из общей строки многочлена вытащить квадрат суммы/разности при "х", и квадрат суммы/разности при у.Остальное - как уж получится.Ага?
Сумма оснований равна 24.Сумма боковых сторон равна сумме оснований. Если в четырехугольник можно вписать окружность то суммы противоположных сторон равны. Это доказывается легко. Нам нужно доказать и обратное утверждение. Оно доказывается следующим построением. Рассмотрим такой четырехугольник. Внишем окружность касающуюся трех сторон. Легко видеть, что четвертая сторона может быть проведена единственным образом, как касательная к окружности проходящая через одну из вершин четырехугольника. Значит описанный вокруг окружности четырехугольник совпадет с заданным.
из прямоугольного треугольника АВС по соотношениям в прямоугольном треугольнике катет равен произведению гипотенузы на косинус прилежащего угла, либо на синус противолежащего угла
АС=АВ*cosa=kcosa
BC=ACcsina=ksina
из прямоугольного треугольника АСД
АД=АСсosa=kcosa*cosa=k(cosa)^2