Средняя линия треугольника параллельна стороне треугольника и равна ее половине . В условии не сказано, параллельно какой из сторон проведена средняя линия MN, поэтому может быть два варианта решения.
1 вариант:
MN параллельна основанию RS, RF=SF, RS+2*RF=30 (дано). Тогда
RS=8, а RF=(30-8):2=11.
2 вариант:
MN параллельна боковой стороне RF. Тогда
RF=SF=8, а RS=30-2*8=14.
Оба варианта удовлетворяют условию существования треугольника (теорема о неравенстве), так как большая сторона меньше суммы двух других сторон.
Объяснение:
Основные определения
Формула для нахождения площади прямоугольного треугольника через катеты
Формула для нахождения площади прямоугольного треугольника через гипотенузу
Формула для нахождения площади прямоугольного треугольника через гипотенузу и острый угол
Формулы нахождения площади прямоугольного треугольника через катет и угол
Формулы нахождения площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу
Поделиться статьей
АВТОР
Анастасия Белова
РУБРИКА
площадь, 8 класс
ДАТА ПУБЛИКАЦИИ
24.12.2020
ПРОСМОТРЫ
137430
Основные определения
Прямоугольный треугольник — это треугольник, в котором один угол прямой, то есть равен 90˚.
Гипотенуза — это сторона, противолежащая прямому углу.
Катеты — это стороны, прилежащие к прямому углу.
Прямоугольный треугольник
Чтобы найти площадь прямоугольного треугольника, можно применить любую формулу нахождения площади треугольника — их несколько.
Вебинар :
Если ребенок не хочет учиться: советы родителям
Записаться →
Формула для нахождения площади прямоугольного треугольника через катеты
Чтобы найти площадь, нужно вывести формулу:
Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию.
S = 1/2 (a × h)
Так как в прямоугольном треугольнике катеты перпендикулярны, то один катет — это высота, проведенная ко второму катету.
Отсюда следует, что площадь прямоугольного треугольника равна половине произведения его катетов.
Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через катеты.
S = 1/2 (a × b), где a и b — катеты
Объяснение:
Пусть медианы AD и СТ пересекаются в точке O. По свойству медиан треугольника, в этой точке они делятся в отношении 2:1. То есть CO=2*OT, AO=2*OD. Поскольку по условию задачи AD=CT, то и OT=OD, CO=AO. Кроме того в треугольниках △AOT и △COD углы <AOT=<COD как вертикальные. Значит △AOT=△COD по 1му признаку. => <TAO=<DCO (1)
Из равенства CO=AO следует, что △AOC - равнобедр. => <OAC=<OCA (2)
Суммируя выводы (1) и (2) делаем заключение, что и углы <BAC=<BCA как суммы равных углов <TAO+<OAC=<DCO+<OCA
А значит треугольник △ABC - равнобедренный и AB=BC чтд.