Наименьшая диагональ правильного шестиугольника равна 5 корней из 3см.определите: а)наибольшую диагональ этого шестиугольника,б)площадь шестиугольника.
Определение: Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой. Линейный угол двугранного угла - это угол, образованный двумя лучами, которые имеют общее начало, лежащее на ребре двугранного угла, и проведенными в обеих гранях перпендикулярно этому ребру. Обе плоскости сечения содержат в себе диагональ куба А1С, которая является линией их пересечения. Соотношение линейных величин у кубов одинаковы. Пусть данный куб единичный, где его ребро равно 1. Тогда его диагональ А1С по формуле диагонали куба равна √3, а диагональ его грани равна √2. А1С=√3 А1В=√2 Искомый угол ∠В1КН, где В1К - высота треугольник аА1В1С. В1Н - перпендикуляр из В1 на плоскость А1СВ, в частности, В1Н перпендикулярен А1В. Из треугольник аА1В1С найдем В1К. Треугольники А1В1С и КВ1С подобны. А1В1:В1К=А1С:В1С 1/В1К=√3/√2 Грани куба - равные квадраты. Диагонали квадрата перпендикулярны и точкой пересечения делятся пополам. В1Н ⊥ А1В, ⇒ является половиной диагонали грани куба и равна ( √2):2 В1К ⊥ А1С, НК ⊥ А1С. Треугольник В1НК - прямоугольный. cos ∠ НВ1К=В1Н:В1К cos ∠НВ1К=(√2/2):√2/√3=√3/2, и это косинус угла 30º. Значит, угол В1КН, как второй острый угол прямоугольного треугольника, равен 90º-30º=60º
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу. h=sqrt 2*8= 4 Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20 sqrt-корень с-гипотенуза 2) Тангенс по определению отношение катетов. Там дробь, но она сокращена. По теореме Пифагора. Сумма квадратов катетов равна квадрату гипотенузы. Чтобы получилось 51^2 8 и 15 - мало 16 и 25 - мало 24 и 45 - как раз. 24^2+45^2=51^2 576+2025=2601 ответ: 24 и 45
1) Наименьшая диагональ на рис. это АС.
Рассмотрим для начала ΔАВС, он рабнобедренный, угол А=углу С=(180-120)/2=30.
Тогда угол САF будет равен 90(120-30).
Теперь рассмотрим ΔАВО он равностороний. Значит большаяя диагональ равна двум сторонам.
Рассмотрим ΔАСF он прямоугольный. По теореме Пифагора:
CF²=AC²+AF², т. к. CF тоже наибольшая диагональ, то CF=2AF
4AF²=AC²+AF²
3AF²=AC²
AF=AC/√3
AF=5 см
CF=2*5=10(см)
2) Пусть площадь будет S, тогда
S=(3√3AB²)/2
AB=AF
AB=5
S=(3√3*25)/2=37,5√3 см²
ответ: наибольшая диагональ равна 10 см; площадь 37,5√3 см².