Объяснение:
1. У параллелограмма (А. противолежащие) стороны равны,
(А. противолежащие) углы равны.
2. Если (D. диагонали) четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.
3. Найдите углы параллелограмм АВСD, если 420?
А. 420; 1280; 1280 C. 420; 1480; 1480
B. 420; 1380; 1380 D. другой ответ.
вот тут совсем не понятно - если бы было так
3. Найдите углы параллелограмм АВСD, если один 42°?
А. 42°; 128°; 128° C. 42°; 148°; 148°
B. 42°; 138°; 138° D. другой ответ.
ответ был бы
B. 42°; 138°; 138°
4. Разность двух углов параллелограмма равна 300. Найдите его углы.
А. 550; 850 C. 750; 1050 B. 650; 950 D. 850; 1150.
здесь тоже не понятно, перепишем
4. Разность двух углов параллелограмма равна 30°. Найдите его углы.
А. 55°; 85° C. 75°; 105° B. 65°; 95° D. 85°; 115°.
сумма всех углов в четырехугольнике = 360°
пусть один угол будет α, другой β = α - 30°
тогда 2α + 2β = 2α + 2(α - 30°) = 360°
4α - 60° = 360°
4α = 360° + 60°
4α = 420°
α = 105°
β = α - 30° = 75°
ответ C. 75°; 105°
5. Периметр параллелограмма АВСD равен 80 см, а АС = 30 см. Найдите периметр треугольника АВС.
А. 70 см B. 60 см C. 80 см D. 50 см.
т.к. периметр - сумма всех сторон, а в параллелограмме противолежащие стороны попарно равны
значит АВ + ВС = 80 см : 2 = 40 см
теперь добавляем сторону АС = 30 см
получаем периметр АВС = АВ + ВС + АС = 40 + 30 = 70 см
ответ А. 70 см
Так как треугольная призма правильная, то в основании лежит правильный(равносторонний) треугольник, который вписан в окружность. Радиус описаной окружности и сторона треугольника связаны соотношением: R=V3\3 *a, отсюда находим сторону треугольника: а=(3*2V3)/V3=6.
Боковая поверхрость призмы состоит из трех равных прямоугольников, в которых известны диагональ и одна из сторон. Найдем другую сторону прямоугольника, используя теорему Пифагора: h^2+6^2=10^2,
h^2= 100-36=64,
h=8..
Площадь боковой поверхности призмы равна 3 умножить на площадь прямоугольника со сторонами 6 и 8. S=3*6*8=144.
ответ:144.
В треугольнике ABC высота CD делит угол C на два угла, причём угол ACD=25 градусов,угол BCD= 40 градусов.
а) Докажите, что треугольник ABC - равнобедренный,и укажите его боковые стороны.
СD - высота. Следовательно, угол АDС=90º
Тогда ∠ САD=180º-90º-25º=65º
∠ВСА=25º+40º=65º
∠ВАС=∠ВСА. Равные углы при стороне АС - признак равнобедренного треугольника. ⇒ АВ=ВС
Доказано.
б)
Высоты данного треугольника пересекаются в точке O. Найдите угол BOC.
ВМ - высота ∆ АВС. Угол ВМС=90º
Для ∆ МОС угол ВОС - внешний и равен сумме двух других, не смежных с ним.
∠ВОС=90º+25º=115º