"В треугольнике заданы две стороны а = 27, b = 9 и угол, противоположный к одной из сторон, α = 138°. Найдите два других угла и третью сторону треугольника."
Так как треугольник прямоугольный, то <A (см.рисунок во вложении) = 90 - <C = 90 – 60 = 30 градусов. Как известно, в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Таким образом если этот катет, т.е. катет ВС обозначить Х, то гипотенуза т.е. сторона АС =2Х. По теореме Пифагора (АС)^2 = (AB)^2 + (BC)^2. Подставив в это уравнение принятые и известный отрезки имеем (2Х)² = 10² + X², или 4Х²= 10²+ X² или 3Х²= 100. Отсюда Х²= 100/3 и малый катет, т.е. Х = √(100\3) = 10/√3. Площадь прямоугольного треугольника равна половине произведения его катетов. Т.е. S = (АВ*ВС)/2 = 10*10/2√3 = 50/√3
Начнём с конца. Перпендикуляр из точки В на плоскость АСМ - это катет треугольника ВС. Его можно найти, зная длину другого катета (АС = 18) и угол А = 30 градусов. Его синус = 1/2, косинус = √3/2, а значит стороны треугольника: АВ = AC/cosA = 18/(√3/2) = 36/√3 ВС = sinA*AB = 1/2 * (36/√3) = 18/√3 Второе требуемое мы нашли. Теперь к первому. Пусть перпендикуляр из точки М к прямой АВ попадает на эту прямую в точке Н. Тогда СН - это высота треугольника АВС (по мне очевидно, но если надо, можно доказать). Найдём СН. Для этого рассмотрим получившийся прямоугольный треугольник АСН, в нём АС - это гипотенуза, значит: СН = AC*sinA = 18 * 1/2 = 9 Теперь рассмотрим треугольник МСН. Он тоже прямоугольный и нам надо найти его гипотенузу: МН² = СМ² + СН² = 12² + 9² = 144 + 81 = 225 = 15² МН = 15 Вот собственно и всё. Не забывайте про единицы измерения, как я, и спрашивайте, если непонятно.
∠В=13°.
∠С=29°.
с=19,5 см.
Объяснение:
"В треугольнике заданы две стороны а = 27, b = 9 и угол, противоположный к одной из сторон, α = 138°. Найдите два других угла и третью сторону треугольника."
***
По теореме синусов:
a/sinA=b/sinB. sinA= sin138° =0.669.
sinB= b*sinA/a=9*0.669/27=0,223.
Угол В равен 13°.
Угол С=180°-(138°+13°)=29°.
По теореме синусов
c/sinC =a/sinA;
c=a*sinC/sinA=27*0.485/0.669=19.5 см