пусть авс-прямоугольный треугольник. тогда гипотенуза ас=17 см. пусть медиана выходит из точки а пусть аm — медиана(тогда bm=cm) обозначим катет bc через y, ac через x, тогда bm=cm=y\2,по теореме пифагора получаем систему и з двух уравнений первое х^2+y^2=17^2 второе x^2+(y\2)^2=15^2 отняв от первое второе получаем 3\4*(y^2)=64 y^2=256\3 y=(+\-)16\корень(3)=(+\-)16\3*корень(3) нас удовлетворяет только положительный корень(длина катета не может быть отрицательным числом), так что y=16\3*корень(3) подставив найденное значение y в первое уравнение находим х х^2+y^2=17^2 х^2+256\3=17^2 х^2=611\3 х=(+\-)корень(611\3) (нас удовлетворяет только положительное значение по той же причине что и выше) х=корень(611\3)ответ корень(611\3) и 16\3*корень(3) катеты треугольника
Вообще то формула Герона записывается так: S=√p((p-a)(p-b)(p-c)
Избавляемся от корня: S^2=p(p-a)(p-b)(p-c) |: p(p-b)(p-c)
p-a=S^2/p(p-b)(p-c)
а=p-S^2/p(p-b)(p-c)- второе слагаемое: дробь
ответ: а=p-S^2/p(p-b)(p-c)