Дано :
∆АВС — прямоугольный (∠С = 90°).
AD = BD.
АС = 12, CD = 10.
Найти :
S(∆ABC) = ?
Так как D — середина АВ, то CD — медиана ∆АВС (по определению).
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.Следовательно, АВ = 2CD = 2*10 = 20.
По теореме Пифагора найдём длину катета СВ :
AB² = AC² + CB²
CB² = AB² - AC² = 20² - 12² = 400 - 144 = 256 => CB = √CB² = √256 = 16.
Площадь прямоугольного треугольника равна половине произведения его катетов.Следовательно, S(∆ABC) = ½*AC*CB = ½*12*16 = 96 (ед²).
96 (ед²).
Дано :
Четырёхугольник ABCD - параллелограмм.
ВЕ = DF (Е ⊂ ВС, F ⊂ AD).
Доказать :
Четырёхугольник AECF - параллелограмм.
Доказательство :
В параллелограмме противоположные углы и противоположные стороны равны между собой (свойство параллелограмма).
Отсюда следует, что ∠В = ∠D, АВ = CD.
Рассмотрим ΔАВЕ и ΔCDF.
ВЕ = DF (по условию)
∠В = ∠D, АВ = CD (по выше сказанному) ⇒ ΔАВЕ = ΔCDF по двум сторонам и углу между ними (первый признак равенства треугольников).
Из равенства треугольников следует и равенство сторон АЕ и CF.
AD = BC (по свойству параллелограмма), но в своё очередь AD = BE + EC ; BC = DF + AF. Учитывая равенство из условия получаем, что ЕС = AF.
Если в четырёхугольнике противоположные стороны попарно равны, то этот четырёхугольник - параллелограмм (свойство параллелограмма).
АЕ = CF ; ЕС = AF (по выше сказанному) ⇒ четырёхугольник AECF - параллелограмм.