Проекция бокового ребра b на плоскость основания - это радиус описанной окружности основания R Высота пирамиды h h = b*sin(β) R = b*cos(β) Площадь основания S₁ - это площадь трёх равнобедренных треугольников с углом при вершине 120° и боковыми сторонами R S₁ = 3*1/2*R²*sin(120°) = 3/2*b²*cos²(β)*√3/2 S₁ = 3√3/4*b²*cos²(β) Объём V V = 1/3*S₁*h = √3/4*b²*cos²(β)*b*sin(β) V = √3/4*b³*cos²(β)*sin(β) Сторона основания a по теореме косинусов из того же самого треугольничка со 120° при вершине a² = 2R² - 2R²*cos(120°) = 3R² a = R√3 = b*cos(β)√3 В равностороннем треугольнике радиусы вписанной r и описанной R окружностей отличаются в два раза, что следует из деления медиан точкой пересечения в отношении 2 к 1 от вершины угла r = R/2 = b*cos(β)/2 Апофема f через высоту и радиус вписанной окружности основания по теореме Пифагора f² = r² + h² = b²*cos²(β)/4 + b²*sin²(β) f = b√(cos²(β)/4 + sin²(β)) И боковая поверхность S₂ S₂ = 3*1/2*a*f = 3/2*b*cos(β)√3*b√(cos²(β)/4 + sin²(β)) S₂ = 3√3/2*b²*cos(β)√(cos²(β)/4 + sin²(β))
При пересечении двух прямых образовалось 4 угла: 2 тупых (обозначим Т), и 2 острых (обозначим Р). Дано: сумма трёх углов равна 200°, каких неизвестно (надо найти). Также найти тупые и их сумму. Рассуждаем. (1) Мы знаем (известно), что тупые углы равны Т1=Т2=Т, как противолежащие. Точно также равны между собой острые Р1=Р2=Р (2) Известно, что Т+Р=180° - как прилежащие (3) Знаем, что тупым называется угол Т>90° 4. А теперь соображаем: можно составить две суммы из 3х углов: 1) Т+Р+Т и 2) Р+Т+Р. Но из (2) и (3) в 1 случае получается 180°+>90° > 270°! а нам дано 200°. Не подходит. Остается только 2 случай Р+Т+Р=200°, или 180°+Р=200°, и Р=20°. Всё, остальное - раз плюнуть: Т=180-20=160° 2Т=320°. Конец.
Высота пирамиды h
h = b*sin(β)
R = b*cos(β)
Площадь основания S₁ - это площадь трёх равнобедренных треугольников с углом при вершине 120° и боковыми сторонами R
S₁ = 3*1/2*R²*sin(120°) = 3/2*b²*cos²(β)*√3/2
S₁ = 3√3/4*b²*cos²(β)
Объём V
V = 1/3*S₁*h = √3/4*b²*cos²(β)*b*sin(β)
V = √3/4*b³*cos²(β)*sin(β)
Сторона основания a по теореме косинусов из того же самого треугольничка со 120° при вершине
a² = 2R² - 2R²*cos(120°) = 3R²
a = R√3 = b*cos(β)√3
В равностороннем треугольнике радиусы вписанной r и описанной R окружностей отличаются в два раза, что следует из деления медиан точкой пересечения в отношении 2 к 1 от вершины угла
r = R/2 = b*cos(β)/2
Апофема f через высоту и радиус вписанной окружности основания по теореме Пифагора
f² = r² + h² = b²*cos²(β)/4 + b²*sin²(β)
f = b√(cos²(β)/4 + sin²(β))
И боковая поверхность S₂
S₂ = 3*1/2*a*f = 3/2*b*cos(β)√3*b√(cos²(β)/4 + sin²(β))
S₂ = 3√3/2*b²*cos(β)√(cos²(β)/4 + sin²(β))