Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей. Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам. Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD. Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63. Далее по теореме Пифагора находим второй катет - АО. И находим расстояние. Это будет ОК-АО.
Теорема: "Если на одной стороне угла отложить равные отрезки и через их концы провести параллельные прямые, пересекающие другую сторону угла, то и на этой стороне угла отложатся равные между собой отрезки". Пусть дан отрезок АВ любой ОПРЕДЕЛЕННОЙ длины. Из точки начала данного отрезка А проводите прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываете 5 РАВНЫХ отрезков ЛЮБОЙ длины. Конец q последнего (пятого) отрезка соединяете с концом В данного Вам отрезка. Затем через концы e - h первых четырех отрезков проводите прямые, параллельные первой qB. Точки пересечения этих прямых с данным Вам отрезком и дадут Вам точки деления отрезка на 5 равных частей. Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая: 1. Проводим окружность 1 радиуса qh c центром в точке q (конец 5-го отрезка) на прямой АС. 2. Проводим окружность 2 радиуса qh c центром в точке m (точка пересечения окружности 2 с прямой qB). 3. Проводим окружность 3 радиуса qh c центром в точке h на прямой АС. 4. Через точки h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn -ромб по построению, так как все стороны равны радиусу qh.
Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам.
Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD.
Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63.
Далее по теореме Пифагора находим второй катет - АО.
И находим расстояние. Это будет ОК-АО.