Если трапеция описана около окружности,то сумма оснований равна сумме боковых сторон,а средняя линия равна полусумме оснований,тогда средняя линия=(4+11):2=7,5
Если разбить этот четырехугольник на 4 треугольника с вершинами в центре окружности, то площадь четырехугольника S получится равной сумме площадей этих четырех треугольников - причем их высоты одинаковы и равны радиусу вписанной окружности: S = h*|AB|/2 + h*|BC|/2 + h*|CD|/2 + h*|DA|/2 или S = h*(|AB| + |BC| + |CD| + |DA|)/2. То есть площадь равна произведению радиуса окружности на половину периметра. Нетрудно показать, для четырехугольника с вписанной окружностью верно следующее соотношение: |AB| + |BC| + |CD| + |DA| = (|AB| + |CD|)*2 = (|BC| + |DA|)*2, то есть S = h*(|AB| + |CD|) = h*(|BC| + |DA|) = 6*28 = 168 кв. см
Воспользуемся формулой площади треугольника S=1/2*ab*sin С, где С - угол между сторонами а и b. Если углы треугольника обозначим как А, В, С, а стороны как а, b, c (соответственно 7, 9, 11), то получим значения площади S=63/2*sin C=77/2*sin B=99/2*sin A. Другая формула площади S=1/4*V(a+b+c)(a+b-c)(a+c-b)(b+c-a)=1/4V27*5*9*13=3/4V195. 63/2sin C=3/4*V195 => sin C=3/4*V195*2/63=3/126*v195=1/42V195 (cos C)^2=1-(sin c)^2 => (cos C)^2=1-195/1764=65/588 => cos C=V65/588=1/14*V65/3=1/42V195. Аналогично находим cos B, cos A.
Если трапеция описана около окружности,то сумма оснований равна сумме боковых сторон,а средняя линия равна полусумме оснований,тогда средняя линия=(4+11):2=7,5