Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
Объяснение:
1)
Проведём две высоты ВК и CL
sin30°=BK/AB
BK=AB*sin30°=4*1/2=2
cos30°=AK/AB
AK=AB*cos30°=4*√3/2=2√3
АК=LD
BC=KL
AD=2*AK+KL=2*2√3+√3=5√3
S(ABCD)=BK(BC+AD)/2=2(√3+5√3)/2=6√3
ответ: площадь трапеции равна 6√3.
2)
∆LMO- прямоугольный, равнобедренный треугольник LO=MO
LO=LM/√2=6/√2=3√2/√2=3√2.
OB=MN
LK=2*LO+OB=2*3√2+2√2=8√2.
S(LMNK)=MO(MN+LK)/2=3√2(2√2+8√2)/2=
=3√2*10√2/2=15*2=30
ответ: площадь трапеции равна 30
3)
sin60°=BK/AB
BK=AB*sin60°=7*√3/2=3,5√3
cos60°=AK/AB
AK=AB*cos60°=7*1/2=3,5
AD=2*AK+BC=2*3,5+4=11
S(ABCD)=BK(BC+AD)/2=3,5√3(4+11)/2=
=3,5√3*15/2=26,25√3
ответ: площадь трапеции равна 26,25√3