Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
AB = CD так как трапеция равнобедренная, ∠ВАD = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников BAD и CDA, ⇒ ΔBAD = ΔCDA по двум сторонам и углу между ними.
Значит ∠CAD = ∠BDA. Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине: ОН = AD/2
ΔВОС подобен ΔDOA по двум углам, значит и ОК = ВС/2
КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.
Треугольник MNK подобен ЕКF, углы КЕF = NМК, КFЕ = NКМ, так как это соответственные углы при параллельных прямых МN и ЕF.
Так как треугольники подобны по двум углам, то их стороны пропорциональны,т.е.
МK : EK = KN : NF= MN : EF. EF = EK*MN : MK = 6*20:10=12