Обозначим через х длину того катета данного прямоугольного треугольника, который составляет с гипотенузой угол в 30°, а через у — длину второго катета.
Используя формулы сторон прямоугольного треугольника, выразим через х длину второго катета:
у = х * tg( 30°) = x * √3.
Согласно условию задачи, площадь данного прямоугольного треугольника равна 32√3.
Поскольку площадь любого прямоугольного треугольника равна половине произведения его катетов, следовательно, можем составить следующее уравнение:
х * х * √3 / 2 = 32√3.
Решаем полученное уравнение:
х² = 32√3 / (√3/2);
х² = 64;
х = 8.
Зная длину первого катета, находим длину второго:
у = x * √3 = 8√3.
Используя теорему Пифагора, находим длину гипотенузы:
√(8² + (8√3)²) = √(64 + 64 * 3) = √(64 * 4) = 8 * 2 = 16.
ответ: длина гипотенузы равна 16.
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
ответ 1. 100; 2. -100; 3. 0
Объяснение:
53°