1 замкнутая кривая, все точки к-рой равно удалены от центра.
Центр окружности – это точка, равноудаленная от точек окружности
Прямая линия, соединяющая центр с любой точкой окружности или поверхности шара.
2 Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой
Хорда, проходящая через центр О, называется диаметром.
3 Окружность называется описанной около треугольника, если она проходит через все его вершины. Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
4 Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон.
5 Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Объяснение:
))
Объяснение:
a = 5 см, b = 6 см, c = 7 см
Проверим.
По теореме косинусов
cos(A) = (b²+c²-a²)/(2bc) = (6²+7²-5²)/(2*6*7) = 60/(2*6*7) = 5/7
A = arccos(5/7)
Часто в математических задачах это уже может считаться ответом. Если угол и его косинус из табличных - то надо писать значение. Если же угол - трансцендентное число - то его вычисление не обязательно. Но можно и вычислить :) Приближённо.
A = arccos(5/7) ≈ 44,42°
cos(B) = (5²+7²-6²)/(2*5*7) = 38/(2*5*7) = 19/35
B = arccos(19/35) ≈ 57,12°
cos(C) = (5²+6²-7²)/(2*5*6) = 12/(2*5*6) = 1/5
C = arccos(1/5) ≈ 78,46°