Вариант ответа 5
Объяснение:
Это больше теоретический вопрос.
Координаты середины отрезка есть среднее арифметическое между соответствующими координатами концов отрезка. Обозначим О1(х1;у1), О2(х2;у2), О3(х3;у3), где О2-середина отрезка О1О3. Составим уравнения для нахождения координат середины отрезка: х2=(х1+х3)/2, у2=(у1+у3)/2. В данных уравнениях известны х2 и х3, у2 и у3. Нужно найти х1 и у1.
х2=(х1+х3)/2, 2х2=х1+х3, х1=2х2-х3 подставим значения: х1=2×7-13=1.
у2=(у1+у3)/2, 2у2=у1+у3, у1=2у2-у3 подставим значения: у1=2×(-2)-4=-8
О(1;-8)- искомая.
1. Если принять значение первого угла за одну часть общего угла, соответственно второй угол будет равен четырем частям (из условия задачи), следовательно 4-1=3, а по условию задачи, их разница равна 108. Теперь делим 108 на 3, получаем, что одна часть общего угла равна 36 градусам, следовательно первый угол будет равен 36 градусам (1*36), а второй 144 градуса (4*36). В сумме, они дают 180 градусов, из чего можно сделать вывод, что прямые, которые пересекает прямая, образующая эти углы, параллельны между собой.
2. Углы АВС и ВСД равны, так как они накрест лежащие. Отсюда делаем вывод, что треугольники АВС и ВСД равны по двум сторонам (АВ=СД и СВ - общая) и углу между ними.