Обозначим О центр вписанной в треугольник окружности. Проведем из него радиусы в точки касания (вписанной окружностью) М - со стороной АВ, Р - со стороной ВС и - точно такой же радиус в точку касания с KL - пусть это точка N. Теперь - веселый трюк :))) Поскольку четырехугольник AKLC - вписанный, то сумма углов AKL и АСВ равна 180 градусов. Равссмотрим теперь четырехугольник MKNO. В нем 2 угла прямые :), поэтому сумма углов MON и AKL тоже 180 градусов. Поэтому угол MON равен углу АСВ :).Но это - еще не всё :)четырехугольник KMON очевидно симметричен относительно КО. Поэтому угол КОN равен С/2 (С - угол АВС). Отсюда KN = r*tg(C/2); r - вписанной окружности :)Совершенно так же показывается, что угол LON равен А/2, где А - угол ВАС, и NL = r*tg(A/2);Таким образом, KL = r*(tg(C/2) + tg(A/2)),где А и С, а также r - это углы и радиус вписанной окружности в треугольнике АВС, у которого известны все стороны (7,9,10) :))) остается просто вычислить эти величины :))Но есть еще один - не слишком важный, но приятный - трюк:)) Дело в том, что АС = r*(1/tg(C/2) + 1/tg(A/2)) = KL/(tg(A/2)*tg(C/2); ПоэтомуKL = AC*tg(A/2)*tg(C/2); так проще считать :))Ну, меленькая пауза на расчеты (красоты наверняка закончились). Воспользуемся формулой tg(A/2) = корень((1-cosA)/(1+cosA)) и вычислим cosA из теоремы косинусов - напротив угла А лежит сторона ВС = 9, имеем9^2 = 10^2 + 7^2 - 2*10*7*cosA; cosA = (10^2 + 7^2 - 9^2)/(2*7*10);(1-cosA)/(1+cosA) = (2*7*10 - (10^2 + 7^2 - 9^2))/(2*7*10 + (10^2 + 7^2 - 9^2)) = 9/26;tg(A/2) = корень(9/26);Аналогично для угла С tg(С/2) = корень((1-cosС)/(1+cosС));7^2 = 10^2 + 9^2 - 2*9*10*cosC; cosC = (10^2 - 7^2 + 9^2)/(2*9*10);(1-cosC)/(1+cosC) = (2*9*10 - (10^2 - 7^2 + 9^2))/(2*9*10 + (10^2 - 7^2 + 9^2)) = 6/39;tg(С/2) = корень(6/39);KL = 10*корень(9/26)*корень(6/39) = 30/13; надо же, корни все пропали :))) А пропали они - потому что надо сначала умом работать, а потом другими частями тела. Продолжив игру с углами, можно легко обнаружить, что угол BLK = A, а угол BKL = C. В самом деле, мы уже показали, что (из-за того, что АСKL - вписанный четырехугольник) угол KLC + угол ВАС = 180 градусов, но угол BLK + угол KLC = 180 градусов, поэтому угол BLK = угол ВАС. Поэтому треугольник ВКL подобен АВС. (По-моему тут решение получить можно проще.)Для начала вычислим BM = BP = x; АМ = АК = y; CK = CP = z -отрезки, на которые делят стороны точки касания вписанной окружности.x + y = 7;y + z = 10;x + z = 9;y - x = 1; 2*y = 8; y = 4; x = 3; z = 6; нам понадобится x.Опять веселые трюки :))Периметр треугольника BKL равен 2*x = 6;(а вот сами докажите :) ну, ладно, подскажу - KM = KN и NL = LP, поэтому BK + KL + BL = BK + KN + NL + BL = MB + BP = 2*x) Из того, что BKL подобен АВС, следует, что BL = KL*7/10; BK = KL*9/10, периметр равен KL*26/10; Поэтому KL*26/10 = 6; KL = 30/13; :
Смежными называются два угла, одна сторона которых общая, а две другие образуют прямую, то есть Дополняющего лучами. Сумма смежных углов равна 180 градусам. Два смежных углы образуют развернутый угол. Если два угла равны, то смежные с ними углы тоже равны. Угол, смежный с прямым углом, является прямым. Угол, смежный с острым углом, тупой. Угол, смежный с тупым углом, является острым. Любой луч, исходящий из вершины развернутого угла и проходит между сторонами разделяет его на два смежные углы. Если два угла равны, то смежные с ними углы также равны. Два угла, смежные с одним и тем же углом, уровне. Если два смежных углы равны, то они прямые. Вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла. Вертикальные углы равны. При пересечении двух прямых образуются две пары вертикальных углов и четыре пары смежных углов. Если известен один из углов, образовавшихся при пересечении двух прямых, то найти другие углы можно следующим образом: найти угол, смежный с данным, учитывая, что их сумма 180 градусов, после чего найти углы, вертикальные с известными, учитывая, что вертикальные углы уровне.
Нехай основа має х см, тоді бічні сторони по х+4 см.
х+х+4+х+4=26
3х=18
х=6
Основа 6 см, бічні сторони по 6+4=10 см.
Відповідь: 6 см, 10 см, 10 см.