Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
Рассмотрим один из получившихся при пересечении диагоналей ромба прямоугольных треугольника. Его катеты - это половинки диагоналей, а гипотенуза - сторона ромба.
Пусть меньший катет равен х см, тогда больший равен (х+4) см (если одна из диагоналей на 8 см больше другой, то половинка этой диагонали больше на 4 см).
Применим к этому прямоугольному треугольнику теорему Пифагора:
х^2+(x+4)^2=20^2
х^2+ х^2+8x+16=400
2 х^2+8x-384=0
х^2+ 4x-192=0
D=4^2-4*(-192)=16+768=784: корень(D)=28
x1=(-4-28)/(2*1)=-32/2=-16 - не подходит по условию задачи
x2=(-4+28)/(2*1)=24/2=12
Значит, меньший катет прямоугольного треугольника равен 12 см, а второй - 16 см.
Следовательно, диагонали ромба будут равны 24 см и 32 см.
Площадь ромба равна половине произведения его диагоналей, т. е.
Пусть BC=a, AC=b, AB=c, P=a+b+c и r - радиус вписанной окружности. Тогда т.к. cos(ABC)=1/2, то по т. косинусов b²=a²+c²-aс. Кроме того, a²+c²=(a+c)²-2ac=(P-b)²-2ac, значит подставляя это в т. косинусов, получим b²=(P-b)²-2ac-aс, откуда ac=((P-b)²-b²)/3=(P-2b)P/3. Значит площадь S треугольника ABC равна S=(1/2)*ac*sin(60°)=(P-2b)P/(4√3)=P*r/2, откуда r=(P-2b)/(2√3)=(15-2·6)/(2√(3π))=√3/(2√π). Значит площадь вписанного круга равна π·r²=π·3/(4π)=3/4.
более короткий). Если обозначить через x,y,z отрезки на которые точки касания вписанной окружности разбивают стороны треугольника, то получим x+y+z=P/2 и x+y=b, откуда z=P/2-b. Т.к центр впис. окружности лежит на биссектрисе угла в 60 градусов, то r=z·ctg(30°)=(P-2b)/(2√3).
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
Рассмотрим один из получившихся при пересечении диагоналей ромба прямоугольных треугольника. Его катеты - это половинки диагоналей, а гипотенуза - сторона ромба.
Пусть меньший катет равен х см, тогда больший равен (х+4) см (если одна из диагоналей на 8 см больше другой, то половинка этой диагонали больше на 4 см).
Применим к этому прямоугольному треугольнику теорему Пифагора:
х^2+(x+4)^2=20^2
х^2+ х^2+8x+16=400
2 х^2+8x-384=0
х^2+ 4x-192=0
D=4^2-4*(-192)=16+768=784: корень(D)=28
x1=(-4-28)/(2*1)=-32/2=-16 - не подходит по условию задачи
x2=(-4+28)/(2*1)=24/2=12
Значит, меньший катет прямоугольного треугольника равен 12 см, а второй - 16 см.
Следовательно, диагонали ромба будут равны 24 см и 32 см.
Площадь ромба равна половине произведения его диагоналей, т. е.
0,5*24*32=384 (кв. см)