а) Координаты середины отрезка равны полусуммам соответствующих координат его концов.
А (2; -1; 0), В (-4; 2; 2)
Обозначим середину отрезка АВ буковой К
К (-1; 0,5; 1)
б) Нужно найти координаты точки С, если точка В является серединой отрезка АС. Координаты точек А и В известны. Координаты точки С обозначим (x; y; z). И используем формулу для нахождения координат середины отрезка. Находим координаты середины отрезка АС.
Координаты точки В известны. Приравняем их и получим три уравнения, решая которые найдем координаты точки С.
C (-10; 5; 4)
в) Длина отрезка можно вычислить так: квадратный корень из суммы квадратов разностей соответствующих координат концов отрезка.
1. В равностороннем тр-ке углы равны по 60°. значит любой внешний угол тр-ка будет 180-60=120°. 2. Зная половину стороны равностороннего тр-ка легко подсчитать его периметр. Р=8·2·3=48 см. 3. Задачу можно решить логически. В тр-ках АВС и АLС ∠С общий, угол при вершине А в них отличается в два раза, а разница в углах при третьей вершине (В и L) всего в 2°,значит биссектриса делит вершину А на два угла по 2°. Если ∠ВАС=4° и ∠LАС=2°, то ∠АСВ=180-4-114=180-2-116=62° - это ответ. Ошибка в условии очевидна. Поменяли местами размеры углов АВС и АЛС.
а) Координаты середины отрезка равны полусуммам соответствующих координат его концов.
А (2; -1; 0), В (-4; 2; 2)
Обозначим середину отрезка АВ буковой К
К (-1; 0,5; 1)
б) Нужно найти координаты точки С, если точка В является серединой отрезка АС. Координаты точек А и В известны. Координаты точки С обозначим (x; y; z). И используем формулу для нахождения координат середины отрезка. Находим координаты середины отрезка АС.
Координаты точки В известны. Приравняем их и получим три уравнения, решая которые найдем координаты точки С.
C (-10; 5; 4)
в) Длина отрезка можно вычислить так: квадратный корень из суммы квадратов разностей соответствующих координат концов отрезка.
АВ=7