Соединим точку с концами диаметра. Получим прямоугольный треугольник с меньшим катетом 30 см. Примем проекцию хорды на диаметр за х. Радиус будет тогда х+7. Высота делит треугольник на два,тоже прямоугольных. В прямоугольном треугольнике справедливы следующие соотношения:1) h² = a₁· b₁;2) b² = b₁ · c;3) a² = a₁ · c,где b₁ и a₁ - проекции катетов b и a на гипотенузу сПрименим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея.h²=x(x+14) h²=30²-x² x(x+14)=30²-x² x²+14х=900 -x²2x²+14х-900=0x²+7х-450=0Решаем уравнение через дискриминант.D = 1849√D = 43Уравнение имеет 2 корня. x 1=18,x 2= -25 ( не подходит). Радиус окружности равен18+7=25 см
Я так понимаю в условии описка и высота (не вершина) пирамиды равна 5см.
В основании правильной четырехугольной пирамиды SABCD лежит правильный четырехугольник (квадрат) ABCD со сторонами AB=BC=CD=AD=10 cм. Боковыми гранями данной пирамиды являются равные равнобедренные треугольники. Апофемой пирамиды является высота (SE) боковой грани пирамиды, проведенная к основанию (CD) боковой грани.
В прямоугольном треугольнике SAO: Катет SO = 5см Катет OE = 1/2 AB = 5 cм По теореме Пифагора SE² = SO² + OE² SE² = 5² + 5² SE² = 50 SE = √50 SE = 25√2 (см)
что вот это файл с фоткой где