Сумма противоположенных углов вписанного в окружность четырехугольника равна 180 градусов, значит сумма углов B и D = 180. Найдем сначала угол B по теореме косинусов.
угол B = arccos((AB^2+BC^2-AC^2) / (2*AB*BC)) = arccos (225+400-625) / 600) = arccos 0 = 90 градусов(^2 - это в степени 2, т.е. в квадрате), следовательно угол D равен 180 - 90 = 90. Приходим к выводу, что треугольник ACD - прямоугольный треугольник и дальше по теореме пифагора CD=корень из (АС^2-AD^2)=корень из (625-49) = +-24 . ответ: CD = 24.
а) Рассмотрим углы в треугольнике МВС: < ВМС = < МСD, так как эти углы внутренне накрест лежащие углы при параллельных прямых АВ и СD.
Но углы разделённые биссектрисой угла С равны между собой: < BCM = < MCD = < BMC.
То есть углы при основании МС в треугольнике ВМС равны, значит, треугольник ВМС равнобедренный.
б) Периметр АВСD = 2 * АВ + 2 * СD.
АМ + ВМ = АВ = 3,7 + 5,9 = 9,6 (дм).
ВС = МВ = 5,9(дм), как стороны равнобедренного треугольника МВС.
Тогда периметр АВСD = 2 * 9,6 + 2 * 5,9 = 31 (дм).
я считаю сто сд=12 тк в окружности сумма противоположных сторон равны и ад+вс=27 то ав+дс=27 дс=27-15=12 хотя не знаю правильно ли извини если что не так...)