Очевидно, что указанный отрезок является медианой данного треугольника. А медиана разделит равнобедренный треугольник на два абсолютно равных. Периметр полученных треугольников одинаков. Но для подсчета периметра исходного треугольника нужно исключить медиану из расчетов, так как она не будет входит в его периметр (но она входит в периметры маленьких треугольников и мы ее будем исключать из расчетов). Получаем, что периметр каждого маленького треугольника без медианы равен 30 - 5 = 25 см. А потому периметр исходного треугольника равен 25*2 = 50 см. (Начертите рисунок и увидите нагляднее!)
Рассмотрим ΔABC. Так как ∠А=∠В, ΔABC-равнобедренный. По теореме о сумме углов треугольника: ∠С=180°-∠А-∠В=180°-90°=90°, т.е. ΔABC-прямоугольный. Расстоянием от точки С до прямой АВ является высота СD. Так как в равностороннем треугольнике высота является и биссектрисой, и медианой то ∠С разделен пополам, ∠BCD=∠ACD=45°, тогда ΔBCD-равнобедренный прямоугольный. Следует, BD=CD=AB/2=19 см/2=9,5 см. BC=AC (ΔABC-равнобедренный). По теореме Пифагора: BC^2=BD^2+CD^2=90,25 см^2+90,25 cм^2=180,5 cм^2; ВС=√180,5 см^2=9,5√2 см.
Где рисунок