Нехай дано ΔАВС, де АВ=8см; ВС=9см; АС=13см. Проведемо медіану ВК ( АК=АС за властивістю медіани). Добудуємо данний трикутник до паралелограма. Для цього продовжимо Медіану ВК на таку саму довжину. Отримаємо відрізок ВД ВК=КД за побудовою АК=АС за властивістю медіани, отже отримана фігура АВСД ( треба з'єднати усі кінці) є паралелограмом, де АС і ВД-діагоналі паралелограма. За властивістю паралелограма: АС^2 + ВД^2=2*(АВ^2 + ВС^2) 13^2 + ВД^2=2*(8^2 + 9^2) 169 + ВД^2=2*(64+81) 169 + ВД^2=2*145 ВД^2=290-169 ВД^2=121 ВД=11см ВК=КД=5,5см Відповідь: 5,5 см.
Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р. Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам. Но NC=3, значит, NP=1,5. Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ. ответ: 2:3
84;54;42
F=x;
D=2x;
E=2x-30
x+2x+2x-30=180
5x=210
x=42
F=42; D=2×42=84; E=2×42-30=84-30=54