Теорема: каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: рассмотрим произвольный треугольник АВС и докажем, что АВ<АС+СВ
Отложим на продолжении стороны АС отрезок СД равный стороне СВ. В равнобедренном треугольнике ВСД угол 1 = углу 2, а в треугольнике АВД угол АВД > угла 1 и значит угол АВД > угла 2. Так как в треугольнике против большого угла лежит большая сторона то АВ < АД. Но АД = АС + СД = АС + СВ, поэтому АВ< АС + СВ. Теорема доказана.
1. Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
Верно не всегда. Если угол при вершине треугольника тупой, то центр описанной окружности лежит на продолжении высоты, проведенной из вершины, вне треугольника.
2. Если в треугольнике АВС углы А и В равны соответственно 40 и 70, то внешний угол при вершине С этого треугольника равен 70.
Неверно. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Значит внешний угол при вершине С равен 40° + 70° = 110°.
3. Все хорды одной окружности равны между собой.
Не верно. Хорда - отрезок, соединяющий любые две точки окружности. На рисунке АВ ≠ CD.
1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
Теорема: каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: рассмотрим произвольный треугольник АВС и докажем, что АВ<АС+СВ
Отложим на продолжении стороны АС отрезок СД равный стороне СВ. В равнобедренном треугольнике ВСД угол 1 = углу 2, а в треугольнике АВД угол АВД > угла 1 и значит угол АВД > угла 2. Так как в треугольнике против большого угла лежит большая сторона то АВ < АД. Но АД = АС + СД = АС + СВ, поэтому АВ< АС + СВ. Теорема доказана.