М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KakЭтоTak
KakЭтоTak
16.04.2023 11:09 •  Геометрия

Площини квадрата АВСD і трикутника ВЕС перпендикулярні. Знайдіть кут між прямою DЕ і площиною АВС, якщо АВ=4 см, ВЕ=СЕ=8см.

👇
Открыть все ответы
Ответ:
Lngtnk5
Lngtnk5
16.04.2023

1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.

-Нет

2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.

-Нет

3) Прямая и окружность могут иметь только две общие точки.

-Нет

1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK

-MN и KL

2) Справедливы-ли данные суждения?

-Да(Ну, нечем объяснить. Уж простите)

3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.

-2

Объяснение:

-Потому как 1 и 3 верно.

4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °

-Центр вписанной в угол окружности лежит на биссектрисе угла

углы: OAC = OAB = 45°

радиусы в точку касания перпендикулярны касательной.

углы: ABO = АСО = 90°

сумма острых углов прямоугольного треугольника = 90°

-углы: АОС = АОВ = 90-45 = 45°

(Простите, все что знал.)

4,7(17 оценок)
Ответ:
1. Дано: <AOB и <BOC - смежные
             ОD - биссектриса <AOB
             OF - биссектриса <BOC
            <AOD : <FOC =2 : 7
  Найти <AOD и <FOC.
Решение:
2 <AOD + 2<FOC=180°
<AOD+<FOC=90°
<AOD=2x
<FOC=7x
2x+7x=90°
9x=90°
x=10°
<AOD=2*10°=20°
<FOC=7*10°=70°
ответ: <AOD=20°
           <FOC=70°

2. Дано: <EAC=<DCA
             DF=EF
  Доказать, что ΔABC-равнобедренный.
Док-во:
1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда 
AF=FC.
Так как DC=DF+FC  и   AE=AF+EF, то DC=AE.
2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона).
Из равенства Δ следует, что <DAC=<ECA.
<DAC=<BAC
<ECA=<BCA.
Отсюда <BAC=<BCA.
Значит ΔABC-равнобедренный.
Что и требовалось доказать.
4,6(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ