∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)
ответ: ВД приблизительно 73,32см
Объяснение: так как нам известно, что сторону АД =80 ° делит высота ВН, отсекая от неё отрезок 32см, то второй отрезок будет: 80-32=48см;
АН=32см; НД=48см. Рассмотрим ∆АВН- он прямоугольный и ,зная в нём две стороны, найдём по теореме Пифагора высоту ВН:
ВН²=64²-32²=4096-1034=3072=√3072
ВН=√3072см. Теперь рассмотрим ∆ВДН - он тоже прямоугольный и, зная высоту ВН мы можем найти диагональ ВД- расстояние между вершинами тупых углов по теореме Пифагора:
ВД²=48²+3072= 2304 +3072=5376
ВД=√5376=√256×√21=16√21(см). Если округлить до сотых будет приблизительно 73,32(см)