По условию, треугольник АDB прямоугольный. Значит, его площадь равна (12*13)/2 = 78
По свойствам параллелограмма АD = ВС, а АВ = DC.
Итак, рассмотрим треугольники АDВ и DВС:
DВ = DB (общая сторона)
АD = ВС (по св-вам параллелограмма)
АВ = DC (по св-вам параллелограмма)
Из этого заключаем, что треугольники равны по третьему признаку.
Треугольники равны, значит, равны их площади.
Площадь параллелограмма - это сумма площадей треугольников, а они равны, следовательно:
S = 78*2 = 156
ответ: площадь параллелограмма равна 156.
В прямоугольную трапецию с периметром 242 см вписан круг, радиус которого = 30см. Найдите отрезки большей боковой стороны трапеции на которые ее делит точка касания круга. если разница этих отрезков равна 11см
Объяснение:
Большая боковая сторона это СД
Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны⇒АВ+СД=ВС+АД=242:2=121 (см).
Радиус, проведенный в точку касания перпендикулярен касательной ⇒ R=НК=АВ=30*2=60(см).
Значит АВ+СД=121 , 60+СД=121 , СД=61 см.
Пусть меньший отрезок стороны СД будет х см, тогда больший отрезок стороны СД= будет х+11, а из сумма 61 см. Составим уравнение : х+х+11=61 , х=25см
Меньший отрезок 25 см, больший отрезок 25+11=36 (см)