
sin острого угла в прямоугольном треугольнике - отношение катета, лежащего против этого угла, к гипотенузе: sinA=BC/AB=8/17, sinB=АС/АВ=15/17.
cos острого угла в прямоугольном треугольнике - отношение катета, прилежащего к этому углу, к гипотенузе: cosА=АС/АВ=15/17, cosВ=BC/AB=8/17.
tg острого угла в прямоугольном треугольнике - отношение противолежащего катета к катету, прилежащему к этому углу: tgА=ВС/АС=8/15, tgВ=АС/ВС=15/8.
ctg острого угла в прямоугольном треугольнике - отношение катета, прилежащего к этому углу, к противолежащему катет: ctgА=АС/ВС=15/8, ctgВ=ВС/АС=8/15
Дано: ABCD - ромб
AB = 10
<A = 120
Найти: AC, BD = ?
Точка O - пересечение диагоналей AC и BD
Треугольник ABD - р/б (AB=AD т.к ABCD ромб) => AO - биссектриса, высота и медиана.
<BAO = 60 т.к AO - биссектриса
Треугольник ABO - прямоугольный, <ABO = 90-60 = 30
Напротив угла в 30 градусов в прямоугольном треугольнике лежит катет, равный половине гипотенузы AB => AO = 5
т.к ABCD - ромб, его диагонали делятся точкой пересечения пополам => AO=OC = 5 => AC = 2AO = 10
Треугольник ABC - равносторонний (AB=BC=AC) => <B = 60 => <OBC = 30
В треугольнике BOC - прямоугольном BC - гипотенуза = 10, катет OC = 5, найдем сторону BO по теореме Пифагора:
BO² = BC²-OC²
BO² = 10²-5²
BO² = (10-5)(10+5)
BO² = 5*15 = 75
BO = √75
BD = 2√75
BD = 2*√5*5*3
BD = 10√3
ответ: AC = 10 см; BD = 10√3 см
Объяснение: