Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Свойство: Средняя линия треугольника соединяет середины двух сторон, параллельна третьей стороне и равна ее половине. EF - средняя линия. Значит АEFВ - трапеция, в которой CВ=2ЕF. Свойство: Если в трапецию вписана окружность, то сумма оснований трапеции равна сумме ее боковых сторон. Итак, ВС+EF=CE+FB. Но EF=(1/2)*ВС, а СЕ+FB=(1/2)*(АВ+АС). Значит (3/2)*ВС=(1/2)*(АВ+АС) или 3ВС=АВ+АС. АВ+АС+ВС=24 (дано). Тогда 4ВС=24, а ВС=6. Sabc=(1/2)*ВC*h=(1/2)*6*8=24.(так как h=2*d=8, поскольку EF - средняя линия и делит h пополам. Половина же высоты - это в нашем случае диаметр вписанной окружности). По Герону: Sabc=√[p(p-a)(p-b)(p-c). Или S²=12(12-a)(12-b)(12-6). То есть 24²=12*6*(12-a)(12-b) или 8=(12-a)(12-b). Но a+b+c=24, а с=6, значит a+b=18. тогда b=18-a. Подставляем это значение в выражение 2=(12-a)(12-b) и получаем: 8=(12-a)(а-6). Имеем квадратное уравнение: а²-18а+80=0, откуда а1=10, а2=8 и b1=8, b2=10.
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.