1. Одна сторона = х см, другая сторона = 2х см х+х+2х+2х=48 6х=48 х=8 8 см одна сторона 8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам. Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК. Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой. Значит, треугольник АВК равнобедренный, т.к. углы при основании равны. Значит, АВ=ВК=7 см
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией.
A1H - перпендикуляр к плоскости (AB1D1), ∠A1AH - искомый угол.
1)
В треугольнике AB1D1 проведем высоту AK, AK⊥B1D1
AA1⊥(A1B1D1) => AA1⊥B1D1
Следовательно B1D1⊥(AA1K) и (AB1D1)⊥(AA1K)
Перпендикуляр A1H лежит в плоскости (AA1K)
(то есть в плоскости, проходящей через высоту AK)
Рассуждение верно для всех сторон △АB1D1, следовательно H - точка пересечения высот.
Рассмотрим △AB1D1, H - ортоцентр, найдем AH.
AD1 =√5, AB1 =√2 (т Пифагора)
Треугольник равнобедренный, высота к основанию является медианой.
AM =AB1/2 =√2/2
D1M =√(AD1^2 -AM^2) =√(5 -1/2) =3/√2
△AHM~△D1AM => AH/AM =AD1/D1M => AH =√2/2 *√5 *√2/3 =√5/3
cos(A1AH) =AH/AA1 =√5/3, ∠A1AH =arccos(√5/3)
2)
Найдем объем тетраэдра A1AB1D1
V= 1/3 *A1D1 *S(AA1B1) =1/3 *2 *1/2 =1/3
S(AB1D1) =1/2 *√2 *3/√2 =3/2
V= 1/3 *A1H *S(AB1D1) =1/3 *A1H *3/2
Приравниваем объемы, A1H =2/3
sin(A1AH) =A1H/AA1 =2/3, ∠A1AH =arcsin(2/3)