Задача 1. Дан равносторонний треугольник АВС, в который вписан круг. Один из отрезков, на которые делит точка касания вписанной окружности на сторону треугольника равна 5 см. Найдите периметр треугольника.
Задача 2. Гипотенуза прямоугольного треугольника равна 20 см. Найдите длину круга, описанного вокруг этого треугольника.
Объяснение:
Задача 1.
В ΔАВС-равносторонний вписана окружность , Р∈АВ, К∈ВС,М∈АС, Р,М,К-точки касания.АР=5см.
По свойству отрезков касательных и учитывая , что АВ=ВС=СА получаем :
АР=РВ=ВК=КС=СМ=МА=5 см. Значит сторона треугольника 10 см.
Р=3*АВ=30 (см).
Задача 2.
Центр описанной окружности лежит на середине гипотенузы⇒R=10 см. Длина окружности С=2ПR, С=2П*10=20П (см)≈62,8 (см)
Обозначим стороны основания за 1. Двугранный угол при основании определяется в осевом сечении по перпендикуляру к стороне основания.Отсюда высота пирамиды равна половине основания - 0,5 = 1/2. Апофема равна √((1/2)²+(1/2)²) = √(2/4) = √2/2. Боковое ребро равно √((1/2)²+(√2/2)²) = √(1/4 + 2/4) = √3 / 2. Рассмотрим треугольник, где катеты - половина основания и апофема, а гипотенуза - боковое ребро пирамиды. Искомый двугранный угол между смежными боковыми гранямиопределяется в плоскости, перпендикулярной боковому ребру пирамиды. Эта плоскость в сечении образует треугольник со сторонами, включающими линию пересечения основания и 2 перпендикуляра к ребру. Этот перпендикуляр есть высота Н треугольника, равного половине боковой грани пирамиды. По свойству подобных треугольников запишем пропорцию: Н / (1/2) = (√2/2) / (√3/2) Н = √2 /(2√3). cos A = (b²+c²-a²) / (2bc) = (2*2/(4*3)-2/4) / (2*2/12) = -4/12 = -1/2. Этому косинусу соответствует угол 120 градусов.
Задача 1. Дан равносторонний треугольник АВС, в который вписан круг. Один из отрезков, на которые делит точка касания вписанной окружности на сторону треугольника равна 5 см. Найдите периметр треугольника.
Задача 2. Гипотенуза прямоугольного треугольника равна 20 см. Найдите длину круга, описанного вокруг этого треугольника.
Объяснение:
Задача 1.
В ΔАВС-равносторонний вписана окружность , Р∈АВ, К∈ВС,М∈АС, Р,М,К-точки касания.АР=5см.
По свойству отрезков касательных и учитывая , что АВ=ВС=СА получаем :
АР=РВ=ВК=КС=СМ=МА=5 см. Значит сторона треугольника 10 см.
Р=3*АВ=30 (см).
Задача 2.
Центр описанной окружности лежит на середине гипотенузы⇒R=10 см. Длина окружности С=2ПR, С=2П*10=20П (см)≈62,8 (см)