Реши задачу и запиши ответ В треугольнике ABC отмечены точки D на AB и E на АС так, что BC | DE, BC = 12 DE — 8, AC = 30, a BD на 12 меньше, чем AD. Найди АВ! ответ: АВ =
1. PABCD - правильная пирамида. PO_|_ (ABCD) РА=10 см, РО=8 см, <POA=90° ΔPOA. по теореме Пифагора: AO²=PA²-PO² AO²=10²-8², AO²=36, AO =6 см. ΔADC: AC=2AO, AC=12 см, AD=DC=a по теореме Пифагора: AO²=AD²+CD² 12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41 S бок.=24√41 см²
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а. ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит ∠ОАК = ∠ОВН = 90°. Два перпендикуляра к одной прямой параллельны, значит а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Доказательство: ∠1 = ∠2 по условию - соответственные, ∠1 = ∠3 как вертикальные, значит ∠2 = ∠3. А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны. Доказательство: ∠1 + ∠2 = 180° по условию - односторонние углы. ∠2 + ∠3 = 180° так как эти углы смежные, следовательно ∠1 = ∠3. А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.
АВ=36 см
Объяснение:
ΔАВС и ΔАДЕ подобны
ВС/ДЕ=12/8=АВ/(АД)
АД=АВ-12 АВ/(АВ-12) =12/8
8АВ=12(АВ-12); 4АВ=144; АВ=144/4=36 см