ответ: 1) <B=110°,<D=30°. 2) <B=<C=120°, <D=60°. 3) 9.
Объяснение:
1) Углы трапеции, прилегающие к одной из боковых сторон, в сумме дают 180°, как внутренние односторонние углы, поэтому :
<В=180°-<А=180°-70°=110°;
<D=180°-<С=180°- 150°=30°.
2) В равнобедренной трапеции углы при основании равны, значит <D=<A=60°.
AD║ВC по свойству оснований трапеции,
<A и <B - внутренние односторонние углы при AD║ВC и секущей АВ, значит <A+<B=180°.
<B=180°-<A=180°-60°=120°.
<C=<B=120° по свойству углов при основании равнобедренной трапеции.
3) <A=<D по условию, следовательно АВСD-равнобедренная трапеция по признаку, значит СD=АВ=9.
Объяснение:
а) Во вписанном квадрате диагональ равна 2 радиуса=2р. значит
2а²=4р² а=р*√2
для нахождения стороны треугольника опустим высоту до пересечения с окружностью. Получим прямоугольный треугольник.
Высота одновременно и медиана и биссектрисса. Сторона против угла 30 при вершине равна р (половине гипотенузы) Гипотенуза равна 2р.
значит сторона треугольника равна а²=4р²-р²=3р² а=р*√3
периметр треугольника равен 4р√3
периметр квадрата равен 4р√2
соотношение равно √3:√2
б) описанный увадрат имеет сторону равную диаметр 2р.
Периметр квадрата равен 4*2р=8р
В треугольнике соединим вершину и центр круга и опустим радиус в точку касания. Радиус в точку касания перпендикулярен стороне и лежит против угла в 30 градусов. Значит отрезок соединяющий вершину и центр окружности равен 2р. Половину стороны треугольника находим по теореме Пифагора.
а²/4=4р²-р²=3р²
а=2√3*р периметр равен 4*2*√3*р=8√3р
соотношение периметра треугольника к квадрату равно
8√3р:8р= √3 :1
Прямые а и b лежат в одной плоскости и поэтому любая прямая, пересекающая каждую из них, лежит в той же плоскости. Следовательно, если бы каждая из прямых а, b пересекала обе прямые, на примере возьмём и точку - d. С этого с и d, то прямые с и d лежали бы в одной плоскости с прямыми а и b, а этого быть не может, так как прямые с и d скрещиваются.