BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Поскольку AN - биссектриса угла В, то ∠BAK=∠ KAN. ∠BNK=∠KAN как накрест лежащие ⇒ ∠BAK=∠BNK. А значит мы получим, что треугольник ABN равнобедренный. А значит AB=BN. Треугольник ΔABK=ΔBKN (по двум углам и стороне между ними: BN=AB, ∠BNK=∠BNK, ∠ABK=∠NBK поскольку BK биссектриса).
Проведем высоту в треугольнике KBN из К на сторону BN. Поскольку ΔABK=ΔBKN, то и высоты равны KH=KH₁=1. Если опустить высоту из точки К до стороны AD, то получим высоту KH₂. ΔKBN=ΔAKM (по стороне и двум прилежащим к ним углам: AK=KN, ∠KAM=∠BNK, ∠AKM=∠BKN - вертикальные). Значит KH₁=KH₂=1 ⇒ H₁H₂=1*2=2 Sabcd=BC*H₁H₂=2*2=4