Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
АС=ВД=4√2+5√2=9√2
Проведем высоту ВН.
НД=полусумме оснований (свойство равнобедренной трапеции)
. Т.к. угол ВДН=45°, треугольник ВНД- равнобедренный, ВН=НД=9√2*sin 45º=9
S АВСД=произведению полусуммы оснований на высоту.
S АВСД=0,5•(8+10)•9=81 см²
Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему. S = Pl/2. Апофема - высота боковой грани правильной пирамиды. Так как угол 45°, то и угол между апофемой и высотой пирамиды также 45°. Апофема равна высота делить на sin 45°, 3√2 :√2 /2 = 6. Найдем сторону квадрата (пирамида правильная), так как углы по 45°, то длина отрезка , соединяющего центр основания и апофему, равна высоте 3√2 , сторона квадрата равна двум отрезкам 6√2 , периметр 4·6√2 , полупериметр 12√2 , площадь боковой поверхности S = 12√2 ·3√2 = 72
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
3,4/5
11
axatar
65° и 115°
Объяснение:
Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными, а углы 3 и 6, 4 и 5 называются односторонними (см. рисунок). Заметим, что в таком случае углы 2 и 6 равны: ∠2 = ∠6.
По условию разность двух односторонних углов, то есть ∠6 и ∠3, при пересечении двух параллельных секущей равна 50 градусам:
∠6 - ∠3 = 50°. Тогда по замечанию ∠2 - ∠3 = ∠6 - ∠3 = 50°.
Но углы 2 и 3 смежные и поэтому ∠2 + ∠3 = 180°
Имеем систему равенств:
∠2 - ∠3 = 50° (1)
∠2 + ∠3 = 180° (2)
Из уравнения (1) выразим ∠2 через ∠3:
∠2 = 50° + ∠3
Подставим выражение ∠2 в (2):
50° + ∠3 + ∠3 = 180° или
2·∠3 = 180° - 50° или
2·∠3 = 130° или
∠3 = 130° : 2 = 65°.
Тогда ∠2 = 50° + ∠3 = 50° + 65° = 115°
ответ: 65° и 115°