1)Если все стороны треугольника касаются окружности, то окружность называется описанной около треугольника Верно 2)Центр окружности, описанной около произвольного треугольника, лежит в точке пересечения медиан Не верно 3)Центр вписанной в треугольник окружности лежит в точке пересечения биссектрис треугольника Верно 4)В любой треугольник можно вписать окружность Верно 5)Центр окружности, описанной около прямоугольного треугольника, лежит в вершине прямого угла Не верно 6)Около любого треугольника можно описать окружность Верно 7)Центр описанной около произвольного треугольника окружности лежит в точке пересечения высот треугольника Не верно
Объяснение:
Найдем длины сторон треугольника по формуле:
d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=(x2−x1)2+(y2−y1)2
а)
\begin{gathered}|AB|=\sqrt{(2-1.5)^2+(2-1)^2}=\sqrt{1.25}=0.5\sqrt{5}\\ |AC|=\sqrt{(2-1.5)^2+(0-1)^2}=\sqrt{1.25}=0.5\sqrt{5}\\ |BC|=\sqrt{(2-2)^2+(0-2)^2}=\sqrt{4}=2\end{gathered}∣AB∣=(2−1.5)2+(2−1)2=1.25=0.55∣AC∣=(2−1.5)2+(0−1)2=1.25=0.55∣BC∣=(2−2)2+(0−2)2=4=2
Периметр треугольника АВ:
P_{ABC}=AB+BC+AC=0.5\sqrt{5}+0.5\sqrt{5}+2=2+\sqrt{5}PABC=AB+BC+AC=0.55+0.55+2=2+5
б) тут вопрос не совсем понятен, скорее всего длину медианы АМ:
Координаты точки M найдем по формулам деления отрезка пополам.
\begin{gathered}x_M=\dfrac{x_B+x_C}{2}=\dfrac{2+2}{2}=2\\ \\ y_M=\dfrac{y_B+y_C}{2}=\dfrac{2+0}{2}=1\end{gathered}xM=2xB+xC=22+2=2yM=2yB+yC=22+0=1
Длина медианы АМ:
|AM|=\sqrt{(2-1.5)^2+(1-1)^2}=\sqrt{0.5^2}=0.5∣AM∣=(2−1.5)2+(1−1)2=0.52=0.5