1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6
1. Переведем метры в сантиметры: a=6м=600см, b=8м=800см. Зная стороны, можно найти периметр участка: 2(a+b)=2*600+2*800=1200+1600=2800см. 2800см/10см=280 штук.
2. Представим меньшую сторону прямоугольника, как x. Тогда большая сторона будет равна 2,5x. Следовательно,
x*2,5x=250
2,5x²=250
x²=100
x=10см. Из этого следует, что 2,5x=25см.
3. Площадь прямоугольника S=8*18=144. S прямоугольника = S квадрата, S квадрата = a², значит a=12см
4. Площадь трапеции равна произведению высоты на полусумму оснований:
S=h*(a+b)/2
Высота этой трапеции является катетом прямоугольного треугольника и противолежит углу 30°, поэтому равен половине гипотенузы – стороны трапеции, к которой этот угол прилежит.
h=36/2=18см
S=18*(45+68)/2=18*113=1017см²
Объяснение:
МЕНІҢ ОЙЫМША ОЛ СОҒЫС КЕЗІ