Дано:
AO=CO
угол BAO = углу DCO
угол OCD=37⁰
угол ODC=63⁰
угол COD=80⁰
Док-ть:
тр. AOB = тр. COD
Найти:
углы AOB, ABO, BAO - ?
Док-во:
Рассмотрим тр. AOB и COD
- AO=OC - по условию
- угол BAO = углу DCO - по условию
- угол AOB = углу COD - как вертикальные
След-но треугольники равны по стороне и двум прилежащим к ней углам.
тр. AOB = тр. COD ч.т.д.
:
угол BAO = углу DCO - по условию ⇒ угол BAO = 37⁰
угол COD = углу AOB - из док-ва ⇒ угол AOB = 80⁰
угол угол ABO = 180⁰-37⁰-80⁰ = 63⁰
:
Из вышеописанного док-ва тр. AOB = тр. COD:
угол BAO = углу DCO = 37⁰
угол COD = углу AOB = 80⁰
угол CDO = углу ABO = 63⁰
у=х+2
это прямая проходящая через 2 точки: (0;2) и (-1;1);
вторая прямая совпадает с осью ох;
третья прямая проходит через точку (-1;0) параллельно оси оу;
четвёртая проходит через точку (2;0) также параллельно оу;
полученный четырёхугольник с вершинами в точках (-1;0); (-1;1); (2;4);(2;0) можно разбить на 2 фигуры: прямоугольник с вершинами в точках (-1;0);(-1;1);(2;1);(2;0) и прямоугольный треугольник с вершинами в точках (-1;1);(2;1);(2;4).
стороны прямоугольника:
1 и 3;
его площадь: 1*3=3
катеты прямоугольного треугольника:
3 и 3;
его площадь: 3*3/2 = 4,5.
площадь нашего первоначального четырёхугольника равна сумме площадей его частей (то есть прямоугольника и прямоугольного треугольника) = 4,5+3=7,5
ответ: 7,5.