М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dorefi
Dorefi
22.01.2021 18:10 •  Геометрия

Дві прямі ділять площину на
частини;

2. Три прямі ділять площину на
частин;

3. Чотири прямі ділять площину на
части

👇
Открыть все ответы
Ответ:
mamarika2001
mamarika2001
22.01.2021
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.

Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 
4,7(87 оценок)
Ответ:
DIMAZVER1980
DIMAZVER1980
22.01.2021

РК - средняя линия треугольника АВС, значит точки Р(2;3) и К(-1;2) - середины отрезков АС и ВС соответственно.

Координаты точек А и В найдем из того, что координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Тогда Xa=2*Xp-Xc = 2*(4-0) = 4, Ya=2*Yp-Yc = 2*(3-0) = 6. Xb=2*Xk-Xc = 2*(-1-0) = -2, Yb=2*Yk-Yc = 2*(2-0) = 4.

Итак, мы имеем точки А(4;6) и В(-2;4).

Эти точки принадлежат прямой Ax+By+c=0.

Подставим в уравнение координаты точек А и В и получим систему двух уравнений: 4А+6В=-С (1) и -2А+4В=-С (2). Решим эту систему, выразив А и В через С. Умножим (2) на 2 и сложим (1) и (2):

14В = -3С  => В=-(3/14)*С. Подставив это значение в (1), получим А=(1/14)*С. Теперь подставим полученные значения в общее уравнение прямой:

(С/14)*X+(-3C/14)*Y+C=0  и сократим на "С":

(1/14)X -(3/14)Y +1 =0 Или Х-3Y+14=0. Это и есть искомое уравнение прямой, содержащей отрезок АВ.

ответ: уравнение прямой, содержащей отрезок АВ : Х-3Y+14=0.

Проверка: подставим координаты точки А(4;6) в уравнение. Получим 4-18+14=0 => 0=0. И для точки В(-2;4): -2-12+14=0 => 0=0. Точки А и В принадлежат прямой АВ, уравнение найдено верно.


Умоляю, ! в треугольнике авс рк - средняя линия, параллельная ав, р(2; 3), к(-1; 2), с(0; 0). напиши
4,7(49 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ