Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
Боковые грани этой призмы - параллелограммы. По условию общее ребро отстоит от других боковых ребер на 12 см и 35 см - это расстояние по нормали между ребрами, то есть это высоты параллелограммов. Площадь параллелограмма равна произведению высоты на основу (у нас ребро). Площадь боковой поверхности этой призмы будет равна произведению периметра прямоугольного треугольника (перпендикулярного к продольной оси призмы) на боковое ребро. В прямоугольном треугольнике (перпендикулярного к продольной оси призмы) осталось найти гипотенузу: она равна √(12²+35²) = √(144+1225) = √1369 = 37 см. Периметр равен 12+35+37 = 84 см. Отсюда Sбок = 84*24 = 2016 см².
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.