Задача: Известно, что в треугольниках АВС и А1В1С1 А = А1, АВ = А1В1, АС = А1С1. На сторонах ВС и В1С1 отмечены точки К и К1, такие, что СК = С1К1. Докажите, что ∆ АВК = ∆ А1В1К1.
ответы:Δ АВС=ΔА1В1С1 по первому признаку равенства треугольников, так как ∠А=∠А1, АВ=А1В1,АС=А1С1- по условию.
В равных треугольниках соответственные стороны равны,
значит ВС=В1С1, тогда ВК=В1К1, так как КС=К1С1 - по условию.
В ΔАВК иΔА1В1К1:
АВ=А1В1, ВК=В1К1, ∠В=∠В1, значит ΔАВК =ΔА1В1К1 по первому признаку равенства треугольников, что и требовалось доказать.
Рисунок: картинка
ВАС = 30°;
ВСА = 30°;
АВС = 120°.
Объяснение:
Дано:
ΔABD
BD-высота
АВ = 24,2 см
BD=12,1 см
Найти:
ВАС,ВСА, АВС
Высота разбивает равнобедренный треугольник на 2 прямоугольных равных между собой.
В прямоугольном ΔABD катет ВD = 12,1 см, а гипотенуза АВ = 24,2 см.
Если 24,2 см : 12,1 см = 2
Получается, что катет равен половине гипотенузы, а это возможно если этот катет лежит против угла в 30°.
ВАС = ВСА = 30°.
Сумма всех углов треугольника всегда равна 180°.
Отсюда:
АВС = 180° - (30° + 30°) = 120°.
ВАС = 30°;
ВСА = 30°;
АВС = 120°.