Построение выполняется с циркуля и линейки . 1. Строим прямой угол. Рисуем прямую а (см.рисунок), на ней отмечаем точку О. Справа и слева от точки О на прямой а циркулем откладываем произвольные равные отрезки АО=ОВ. Из точки А радиусом АВ циркулем ппроводим вверх дугу.Из точки В радиусом АВ циркулем проводим вверх дугу. Точку пересечения двух последних дуг -точку С соедим с точкой О. Получили прямую b. Прямые a и b -перпендикулярны. 2.Строим катеты. Из точки О на прямой a вправо циркулем отложим отрезок ОD , равный первому катету. Из точки О на прямой b вверх циркулем отложим отрезок ОЕ, равнй второму катету. Соединим точки Е и D.Треугольник ОЕD построен
Решить треугольник - найти его характеристики по заданным условиям. Нам надо найти угол BAC, стороны AC и AB. Найдём угол BAC: BAC = 180° - (30° + 105°) = 180° - 135° = 45° По теореме синусов найдём сторону AC: (BC)/(sinBAC) = (AC)/(sinABC); (3√2)/(√2/2) = (AC)/(1/2); AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см По той же теореме синусов найдём сторону AB: (AC)/(sinABC) = (AB)/(sinBCA); sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191 (3)/(1/2) = (AB)/(1.6191); AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
а)∠1=45°
∠2=135°
б)∠1=65
Объяснение:
а) ∠1+3∠1=180°; ∠1=180/4=45°
б) ∠1+∠1+50=180°; ∠1=65