с геометрией... ПОКАЖИТЕ , ЧТО БИССЕКТРИСЫ НАКРЕСТ ЛЕЖАЩИХ УГЛОВ , ПОЛУЧАЮЩИХСЯ ПРИ ПЕРЕСЕЧЕНИИ ДВУХ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ a И b СЕКУЩЕЙ c ПАРАЛЛЕЛЬНЫ ( РИС.9)
Чтобы доказать утверждение, достаточно доказать, что линия центров делит внутреннюю касательную пополам (тогда она и вторую делит пополам :)). Если соединить центры окружностей и провести радиусы в точки касания внутренней касательной, то мы получим 2 прямоугольных треугольника с равными углами и катетами-радиусами, которые равны по условию. Этого достаточно,чтобы утверждать равенство треугольников. Откуда и следует, что линия центров делит внутреннюю касательную пополам. Значит, она и вторую делит пополам, значит - внутренние касательные пересекаются в своих серединах.
Рассмотрим равнобедренный треугольник АВС, лежащий в основании пирамиды: Центр пирамиды будет лежать на пересечении серединных перпендикуляров, тогда точка будет одинаково удалена от вершин АВС, т.к. образуются три равных по катетам прямоугольных треугольника или, по-другому, это будет О- центр описанной около АВС окружности.Высота BH , на сторону АС равна Боковая сторона К сторонам ВС и АС проведём серединные перпендикуляры ОК и ОН, пересекающиеся в точке О.Рассмотрим два подобных треугольника ВОК и НВС( они подобны так как имеют по прямому углу и одному общему)S-вершина пирамиды
C секущая а и б паралельны