Объяснение:Для решения задачи воспользуемся следующей теоремой:
Для выпуклого n-угольника сумма углов равна 180°(n-2).
Таким образом, сумма углов равнобокой (равнобедренной) трапеции равна:
180 ( 4 - 2) = 360 градусов.
Исходя из свойств равнобокой трапеции о том, что ее углы попарно равны, обозначим одну пару углов как х. Поскольку один угол на 30 градусов больше второго, то сумма углов равнобокой трапеции равна:
Найдите площадь описанной около окружности правильного треугольника,если площадь вписанного в эту окружность квадрата равна 2√3 см².
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -? S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒ a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * * Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
ответ: 75 и 105
Объяснение:Для решения задачи воспользуемся следующей теоремой:
Для выпуклого n-угольника сумма углов равна 180°(n-2).
Таким образом, сумма углов равнобокой (равнобедренной) трапеции равна:
180 ( 4 - 2) = 360 градусов.
Исходя из свойств равнобокой трапеции о том, что ее углы попарно равны, обозначим одну пару углов как х. Поскольку один угол на 30 градусов больше второго, то сумма углов равнобокой трапеции равна:
х + (х + 30) + х + ( х + 30 ) = 360
4х + 60 = 360
х = 75
ответ: углы равнобокой (равнобедренной) трапеции равны 75 и 105 градусов попарно