М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
EminAkid
EminAkid
27.06.2021 12:09 •  Геометрия

В треугольнике ABC AB Б 3 см BC 7 см AC 5 см. ABC A1B1C1 подобны. A1B1 9 см.найдите все стороны A1B1C1. Hайдите отношение площадей этих треугольников

👇
Ответ:
yana4ka3
yana4ka3
27.06.2021

\frac{a1b1}{ab} = \frac{b1c1}{bc} = \frac{a1c1}{ac} = \frac{9}{3} = 3 \\ a1c1 = 3ac = 15 \\ b1c1 = 3bc = 21

s = \sqrt{p(p - a)(p - b)(p - c)} \\ p = \frac{a + b + c}{2}

\frac{s}{s1} = \sqrt{ \frac{p(p - ab)(p - bc)(p - ac)}{3p(3p - 3ab)(3p - 3bc)(3p - 3ac)} } = \sqrt{ \frac{1}{3 \times 3 \times 3 \times 3} } = \sqrt{ \frac{1}{ {3}^{4} } } = \frac{1}{9} \\ \\ \frac{s1}{s} = 9

4,6(12 оценок)
Открыть все ответы
Ответ:
Luchik22
Luchik22
27.06.2021

Вариант решения.  

   Угол между плоскостями EBC и ECD - двугранный. Его величина равна величине линейного угла между ними, т.е. равна  величине  угла, сторонами которого являются лучи с общим началом на ребре двугранного угла, проведенные  в его гранях перпендикулярно ребру.

  Т.к. острый угол ромба 60°, диагональ ВD делит ромб на два равносторонних треугольника. Примем стороны ромба равными 1.  Тогда АЕ=2, ВD=АВ=1, AC=2AO=2•sin60°=√3.

 Треугольники АЕВ и АЕD равны  по равным катетам.

По т.Пифагора ЕD=ЕВ=√(AE²+AD²)=√(4+1)=√5

EC=√(AE²+AC²)=√(4+3)=√7  

 Треугольники ЕСD и ЕСВ равны по трем сторонам. Поэтому основания их высот, проведенные из равных углов ( ∠СBЕ=∠СDЕ) к общей стороне ЕС, совпадут. Отрезки КВ и КD перпендикулярны ребру ЕС двугранного угла в одной точке К. Угол ВKD - искомый.

 1) По т.косинусов  ЕD²=EC²+CD² -2ED•CD•cosECD. ⇒

5=7+1- 2•1•√7•cosECD  ⇒   cosECD= (5-8): (-2√7)=3/2√7

Из прямоугольного ∆ СКD  длина DK=ВК=СD•sinECD. Из формулы sin²x+cos²x=1 находим sinECD=√(1-9/28)=(√19)/2√7.⇒ DK=BK=1•(√19)/2√7. Из ∆ ВКD  BD²=BK²+DK²- 2BK•DK•cosBKD ⇒ 1=19/28+19/28-2•19/28•cosBKD,  ⇒ 1=2•19/28•(1-cosBKD)   откуда cos∠BKD=1-14/19=5/19  ∠BKD=arccos 5/19


Abcd - ромб с острым углом а - 60°в точке a проведен перпендикуляр к плоскости ромба ae длиной равно
4,6(49 оценок)
Ответ:
gabbivil
gabbivil
27.06.2021

Пусть С- начало координат.

Пусть ромб единичный.

Ось X - CA

Ось Y - перпендикулярно X в сторону B

Ось  Z - перпендикулярно плоскости ромба в сторону E

координаты точек

E(√3;0;2)

B(√3/2;0.5;0)

D(√3/2;-0.5;0)

Уравнение плоскости EBC (проходит через начало координат)

ax+by+cz=0

подставляем координаты точек

√3a+2c=0

√3a/2+b/2=0 или √3a+b=0

Пусть a=2√3 тогда b= -6 c= -3

уравнение 2√3x-6y-3z=0

Уравнение плоскости ECD (проходит через начало координат)

ax+by+cz=0

подставляем координаты точек

√3a+2c=0

√3a/2-b/2=0 или √3a-b=0

Пусть a=2√3 тогда b= 6 c= -3

уравнение 2√3x+6y-3z=0

Косинус искомого угла равен

| 2√3*2√3 -6*6 +3*3 | / ((2√3)^2+6^2+3^2) =  15 / 57 = 5/19

4,5(79 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ